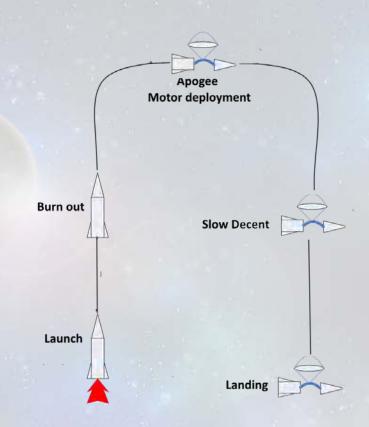
Dual Deployment Systems & Techniques

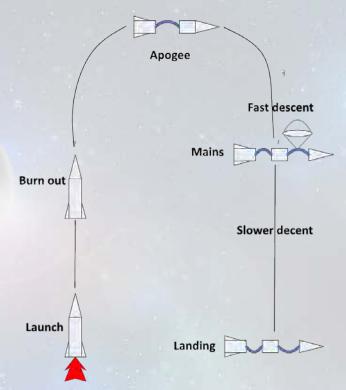

Presented by

Ben Russell

NAR 5765, Level 3

February 25, 2017

Single Stage Deployment



- Uses motor ejection
- Works well for low to mid power
- Doesn't work well for high power flights. It can be a long walk when the main is deployed at apogee

Electronics and Dual Deployment

- With the advent of mid and high power motors and the increase in altitude, we needed to stay within the waiver radius
- Support for dual deployment
 - Apogee
 - Mains at a set altitude
- More reliable than motor ejection

Dual Deployment

- Apogee deployment
 - Motor ejection
 - Electronic
- Main deployment
 - Electronic

Deployment Altimeters

- Electronic devices which control apogee and main deployment events
- Uses a barometric sensor to determine when to fire apogee and main events
- Some use barometric and accelerometer sensors to determine apogee and main events
- Not be confused with recording altimeters such as the Altimeter 3 from Jolly Logic
- Depending on flight profile multiple altimeters may be used

Mid Power Dual Deployment

Jolly Logic Chute Release

- Great for low power to mid power deployments
- Restricted by size of the chute.
- Does not require the use of pyrotechnics
- Motor ejection to get the chute bundle out at apogee
- Main is released at selected altitude
- Chute bundle
 - Chute is folded with the chute release wrapped around it
 - Can act as a drogue
 - Because the chute is already out in the air steam the chute can be released at a lower altitude

Basic Altimeter

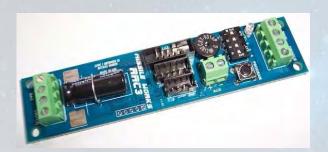
Performs the following functions

- Apogee and main deployments
- Beeps or flashes out the apogee altitude
- May record flight data

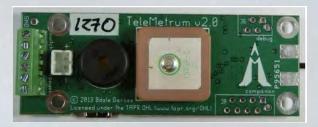
PerfectFlite Stratologger CF

Missile Works RRC2

Advanced Altimeters Flight Computer


Perform the following functions

- Apogee deployment
- Main deployment
- Air starts
- Staging
- Record flight data
- Tracking GPS or radio beacon
- Remote ground testing of charges

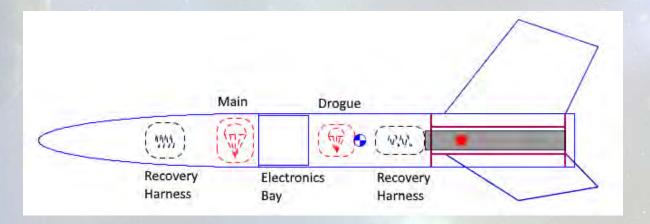


Advanced Altimeters Flight Computer

Missile Works RRC3

Altus Metrum TeleMetrum

Marsa System Marsa54L

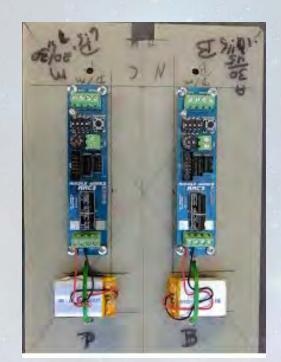


High Power Dual Deployment

- The type of deployment depends on where the main is stored and released from.
 - Payload

Head End Deployment (HED)

Electronics Bay


- Major components
 - Coupler
 - Switch band optional
 - End caps/lids
 - Threaded rods
 - Sled for mounting electronics
 - Switches
 - Batteries
 - Charge containers
 - Recovery hard points
 - Static ports
 - Attachment points / holes
- Must be a sealed container to protect the electronics from ejection gases

- End caps
 - Wood, metal or fiberglass
 - Charge holder
 - Ematch
 - Powder
 - Recovery hard points
 - U-Bolts
 - Eye bolts
 - Eyelets
 - Must support recovery loads
 - Threaded rod(s) to hold the lids together
 - Aluminum
 - Plastic
 - Metal
 - Must support recovery loads

- Conventual Avionics Bay
 - Made out of
 - Wood
 - Fiberglass (G10)
 - Metal
 - Altimeter(s)
 - Batteries
 - Switches
 - Turning on the electronics
 - Arming the charges
 - Required wiring

- 3D printed Avionics Bay
 - On the net Thingiverse
 - Manufacturer

- Types of Switches
 - Screw
 - Rotary
 - Magnetic
 - Twist wires

- Switches need to be mounted securely
- Can take the G load
- Static ports
 - Required by the altimeter for pressure equalization
 - Size and number of the port(s) is based on the volume of the bay/coupler
 - Each manufacture has its own way of calculating the number and size of the ports

Batteries

- Compatible with the electronics
- 9v alkaline
 - Only use the ones which have their internal connections soldered. For example, Duracell
 - Don't buy the cheap \$1 batteries from the Dollar store. Your rocket is worth way more than a battery


LiPo

- Use manufacture recommended size. Don't use a 2s when the recommendation is a 1S.
- Use a good charger
- Handle with care
- Must be mounted securely. You don't want your batteries coming lose during flight. Can be mounted on the opposite side of the sled
- Use only fresh and or fully charged batteries

- Multiple altimeters
 - Primary
 - Deploys at apogee
 - Deploys main at selected altitude
 - Back up
 - Deploys at apogee + some number of seconds
 - Deploys main at an altitude lower than the primary
 - Charges are 20 to 50% larger than the primary charges
 - Same manufacture or different manufactures?
 - True redundancy would say different
 - However, manufactures have different algorithms for detecting apogee and main deployment altitude which can lead to unexpected results.
 - Make sure the both altimeters don't fire their charges at the same time

Connecting the pieces

- Removable sections
 - Plastic rivets
 - Bolts or screws

- Preventing drag separation
 - Friction fit
 - Tape
 - Not consistent
 - Shear pins
 - Nylon Screws
- 2-56 or 4-40
- Paper Phenolic air frames and coupler needs to be reenforced

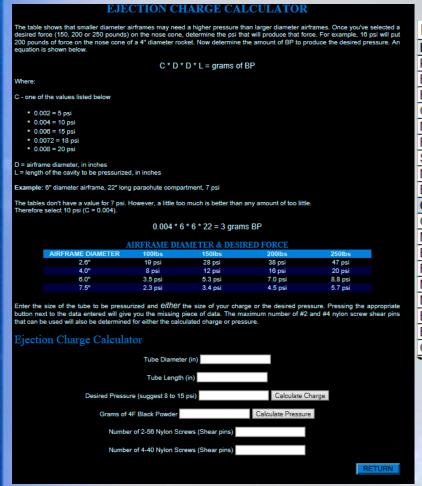
Deployment Charges

- Pyrotechnics
 - Black powder
 - 4F (FFFF) regulated and may be hard to obtain
 - 3F (FFF) requires more powder
 - Black Powder substitutes
 - Pyrodex
 - Triple Seven
 - Easily obtained
 - Requires more powder
 - Must be tightly contained
 - Charge holders
 - Finger tip of a rubber glove
 - Ejection canisters

Deployment Charges - Continued

- Non Pyrotechnics
 - CO2
 - Doesn't leave a residue like BP
 - Great for high altitude deployments

E-Matches


- Used to set the charge off
- MJG Firewire Initiator
- Available from your onsite vendor

Deployment Charge - continued

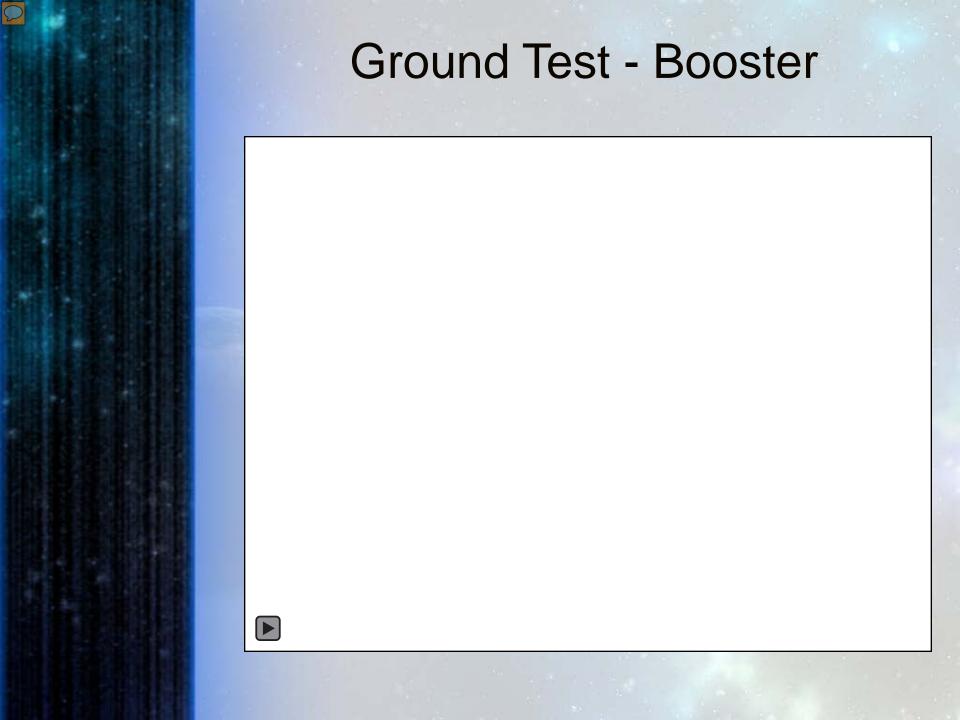
- Determining charge size
 - Depends on the volume of the container in which the recovery electronics is housed
 - Shear pins and or friction fitting needs to be accounted for
 - Recovery harness, parachute protectors and parachutes all take up space/volume
 - Calculators
 - From the net
 - Spreadsheets
 - Pick one that you are comfortable with or recommended by a friend
 - Ground test ... Ground test ... Ground test

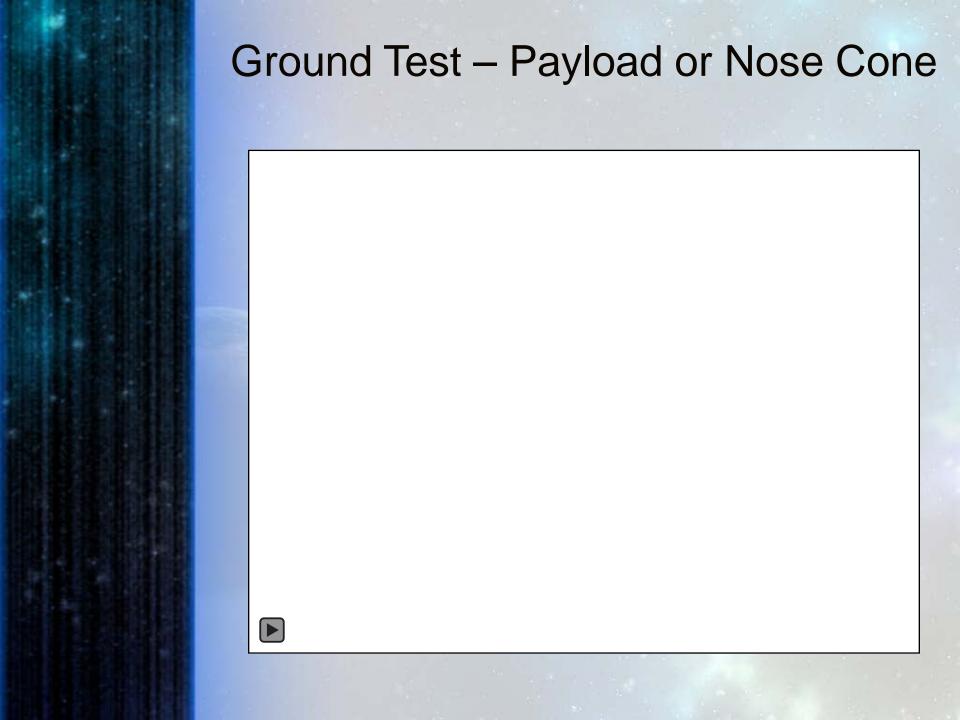
Deployment Charge - continued

Black powder - Shear Pin Calculator		
Entered values		
Rocket	Javelin 38	
Body tube diameter	1.5	inches
Body tube length	11	inches
Ground level altitude	250	ft
Max altitude	12000	ft
Force to overcome friction	3	lbs
Screw size	2-56	
Number of screws	2	
Black powder weight	0.5	grams
Calculated Values		
Ground level pressure	14.56	psi
Max altitude pressure	9.34	
Ejection charge pressure	49.82	psi
Force on nosecone at max altitude	9.22	lbs
Min shear strength of screws	61.96	lbs
Max shear strength of screws	70.77	lbs
Ejection charge force at ground level	91.05	
Ejection charge net force at max altitude	100.27	lbs
Good Combination?	TRUE	

Ground Test

- Verifies your charge size before flying
- Test primary and backup apogee and main charges
- Where you ground test depends
 - Do you have enough space to do it at your home?
 - Neighbors friendly?
 - Launch site recommended
- Test launch ready
 - Charges installed
 - Recovery wadding installed
 - Parachutes installed
 - Recovery harness installed
 - Shear pins installed, if used
 - "Dummy" motor installed in motor tube


Ground Test - continued


- Setting off the charge
 - DO IT OUT DOORS
 - Safe distance
 - 25' or more from the rocket
 - Using a wire
 - Connected to the charge's e-match
 - How the connected wire comes out of the air frame depends on how the e-bay is configured
 - Make sure the connected wire doesn't interfere with the separation of the parts
 - 25' or more
 - 9V battery

Ground Test - continued

- Remotely
 - Altimeter is mounted in the e-bay
 - Wireless connection Bluetooth or WIFI
 - Altimeters
 - Altus Metrum all products
 - Egg Finder
 - Missile Works RRC3
 - » mDACS software
 - » RTx/RRC3 Bluetooth Master Module

Ground Test

Successful ground test is when all of the recovery gear is pulled and you haven't reached the end of the recovery harness.

